Reference Library
Besides strong efforts in research and development, OBI continues to collaborate with renown experts in the field to contribute to the field of science.
Glycans, chains of sugar molecules found conjugated to cell proteins and lipids, contribute to their growth, movement and differentiation. Aberrant glycosylation is a hallmark of several medical conditions including tumorigenesis. Glycosphingolipids (GSLs), consisting of glycans conjugated to a lipid (ceramide) core, are found in the lipid bilayer of eukaryotic cell membranes. GSLs, play an active role in cell processes. Several GSLs are expressed by human embryonic stem cells and have been found to be overexpressed in several types of cancer. In this review, we discuss the data, hypotheses and perspectives related to the GSLs Globo H and SSEA-4.
Globo H (GH), a hexasaccharide, is expressed at low levels in normal tissues but is highly expressed in multiple cancer types, rendering it a promising target for cancer immunotherapy. OBI-999, a novel antibody-drug conjugate, is derived from a conjugation of a GH-specific mAb with a monomethyl auristatin E (MMAE) payload through a site-specific ThioBridge and a cleavable linker. OBI-999 high homogeneity with a drug-to-antibody ratio of 4 (>95%) was achieved using ThioBridge. OBI-999 displayed GH-dependent cellular internalization and trafficked to endosome and lysosome within 1 and 5 hours, respectively. Furthermore, OBI-999 showed low nanomolar cytotoxicity in the assay with high GH expression on tumor cells and exhibited a bystander killing effect on tumor cells with minimal GH expression. Tissue distribution indicated that OBI-999 and free MMAE gradually accumulated in the tumor, reaching maximum level at 168 hours after treatment, whereas OBI-999 and free MMAE decreased quickly at 4 hours after treatment in normal organs. Maximum MMAE level in the tumor was 16-fold higher than in serum, suggesting that OBI-999 is stable during circulation and MMAE is selectively released in the tumor. Excellent tumor growth inhibition of OBI-999 was demonstrated in breast, gastric, and pancreatic cancer xenograft or lung patient-derived xenograft models in a dose-dependent manner. The highest nonseverely toxic dose in cynomolgus monkeys is 10 mg/kg determined by a 3-week repeated-dose toxicology study demonstrating an acceptable safety margin. Taken together, these results support further clinical development of OBI-999, which is currently in a phase I/II clinical study in multiple solid tumors (NCT04084366). OBI-999, the first GH-targeting ADC, displayed excellent tumor inhibition in animal models across multiple cancer types, including breast, gastric, pancreatic, and lung cancers, warranting further investigation in the treatment of solid tumors.
Purpose: This randomized, double-blind, placebo-controlled, parallel-group, phase II trial assessed the efficacy and safety of adagloxad simolenin (OBI-822; a Globo H epitope covalently linked to keyhole limpet hemocyanin (KLH)) with adjuvant OBI-821 in metastatic breast cancer (MBC).
Methods: At 40 sites in Taiwan, USA, Korea, India, and Hong Kong, patients with MBC of any molecular subtype and ≤2 prior progressive disease events with stable/responding disease after the last anticancer regimen were randomized (2:1) to adagloxad simolenin (AS/OBI-821) or placebo, subcutaneously for nine doses with low-dose cyclophosphamide. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival, correlation of clinical outcome with humoral immune response and Globo H expression, and safety.
Results: Of 349 patients randomized, 348 received study drug. Patients with the following breast cancer subtypes were included: hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) (70.4%), triple negative (12.9%), and HER2+ (16.7%), similarly distributed between treatment arms. Median PFS was 7.6 months (95% CI: 6.5-10.9) with AS/OBI-821 (n=224) and 9.2 months (95% CI: 7.3-11.3) with placebo (n=124) (HR=0.96; 95% CI: 0.74-1.25; p=0.77), with no difference by breast cancer subtype. AS/OBI-821 recipients with anti-Globo H IgG titer ≥1:160 had significantly longer median PFS (11.1 months (95% CI: 9.3-17.6)) versus those with titers <1:160 (5.5 months (95% CI: 3.7-5.6); HR=0.52; p<0.0001) and placebo recipients (HR=0.71; p=0.03). Anti-KLH immune responses were similar at week 40 between AS/OBI-821 recipients with anti-Globo IgG titer ≥1:160 and those with anti-Globo IgG titer <1:160. The most common adverse events with AS/OBI-821 were grade 1 or 2 injection site reactions (56.7%; placebo, 8.9%) and fever (20.1%; placebo, 6.5%).
Conclusion: AS/OBI-821 did not improve PFS in patients with previously treated MBC. However, humoral immune response to Globo H correlated with improved PFS in AS/OBI-821 recipients, leading the way to further marker-driven studies. Treatment was well tolerated.NCT01516307.
Methods: At 40 sites in Taiwan, USA, Korea, India, and Hong Kong, patients with MBC of any molecular subtype and ≤2 prior progressive disease events with stable/responding disease after the last anticancer regimen were randomized (2:1) to adagloxad simolenin (AS/OBI-821) or placebo, subcutaneously for nine doses with low-dose cyclophosphamide. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival, correlation of clinical outcome with humoral immune response and Globo H expression, and safety.
Results: Of 349 patients randomized, 348 received study drug. Patients with the following breast cancer subtypes were included: hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) (70.4%), triple negative (12.9%), and HER2+ (16.7%), similarly distributed between treatment arms. Median PFS was 7.6 months (95% CI: 6.5-10.9) with AS/OBI-821 (n=224) and 9.2 months (95% CI: 7.3-11.3) with placebo (n=124) (HR=0.96; 95% CI: 0.74-1.25; p=0.77), with no difference by breast cancer subtype. AS/OBI-821 recipients with anti-Globo H IgG titer ≥1:160 had significantly longer median PFS (11.1 months (95% CI: 9.3-17.6)) versus those with titers <1:160 (5.5 months (95% CI: 3.7-5.6); HR=0.52; p<0.0001) and placebo recipients (HR=0.71; p=0.03). Anti-KLH immune responses were similar at week 40 between AS/OBI-821 recipients with anti-Globo IgG titer ≥1:160 and those with anti-Globo IgG titer <1:160. The most common adverse events with AS/OBI-821 were grade 1 or 2 injection site reactions (56.7%; placebo, 8.9%) and fever (20.1%; placebo, 6.5%).
Conclusion: AS/OBI-821 did not improve PFS in patients with previously treated MBC. However, humoral immune response to Globo H correlated with improved PFS in AS/OBI-821 recipients, leading the way to further marker-driven studies. Treatment was well tolerated.NCT01516307.
Purpose: OBI-3424 is a highly selective prodrug that is converted by aldo-keto reductase family 1 member C3 (AKR1C3) to a potent DNA-alkylating agent. OBI-3424 has entered clinical testing for hepatocellular carcinoma and castrate-resistant prostate cancer, and it represents a potentially novel treatment for acute lymphoblastic leukemia (ALL).
Experimental design: We assessed AKR1C3 expression by RNA-Seq and immunoblotting, and evaluated the in vitro cytotoxicity of OBI-3424. We investigated the pharmacokinetics of OBI-3424 in mice and nonhuman primates, and assessed the in vivo efficacy of OBI-3424 against a large panel of patient-derived xenografts (PDX).
Results: AKR1C3 mRNA expression was significantly higher in primary T-lineage ALL (T-ALL; n = 264) than B-lineage ALL (B-ALL; n = 1,740; P < 0.0001), and OBI-3424 exerted potent cytotoxicity against T-ALL cell lines and PDXs. In vivo, OBI-3424 significantly prolonged the event-free survival (EFS) of nine of nine ALL PDXs by 17.1-77.8 days (treated/control values 2.5-14.0), and disease regression was observed in eight of nine PDXs. A significant reduction (P < 0.0001) in bone marrow infiltration at day 28 was observed in four of six evaluable T-ALL PDXs. The importance of AKR1C3 in the in vivo response to OBI-3424 was verified using a B-ALL PDX that had been lentivirally transduced to stably overexpress AKR1C3. OBI-3424 combined with nelarabine resulted in prolongation of mouse EFS compared with each single agent alone in two T-ALL PDXs.
Conclusions: OBI-3424 exerted profound in vivo efficacy against T-ALL PDXs derived predominantly from aggressive and fatal disease, and therefore may represent a novel treatment for aggressive and chemoresistant T-ALL in an AKR1C3 biomarker-driven clinical trial.
Experimental design: We assessed AKR1C3 expression by RNA-Seq and immunoblotting, and evaluated the in vitro cytotoxicity of OBI-3424. We investigated the pharmacokinetics of OBI-3424 in mice and nonhuman primates, and assessed the in vivo efficacy of OBI-3424 against a large panel of patient-derived xenografts (PDX).
Results: AKR1C3 mRNA expression was significantly higher in primary T-lineage ALL (T-ALL; n = 264) than B-lineage ALL (B-ALL; n = 1,740; P < 0.0001), and OBI-3424 exerted potent cytotoxicity against T-ALL cell lines and PDXs. In vivo, OBI-3424 significantly prolonged the event-free survival (EFS) of nine of nine ALL PDXs by 17.1-77.8 days (treated/control values 2.5-14.0), and disease regression was observed in eight of nine PDXs. A significant reduction (P < 0.0001) in bone marrow infiltration at day 28 was observed in four of six evaluable T-ALL PDXs. The importance of AKR1C3 in the in vivo response to OBI-3424 was verified using a B-ALL PDX that had been lentivirally transduced to stably overexpress AKR1C3. OBI-3424 combined with nelarabine resulted in prolongation of mouse EFS compared with each single agent alone in two T-ALL PDXs.
Conclusions: OBI-3424 exerted profound in vivo efficacy against T-ALL PDXs derived predominantly from aggressive and fatal disease, and therefore may represent a novel treatment for aggressive and chemoresistant T-ALL in an AKR1C3 biomarker-driven clinical trial.
The globo-series glycosphingolipids (GSLs) SSEA3, SSEA4, and Globo-H specifically expressed on cancer cells are found to correlate with tumor progression and metastasis, but the functional roles of these GSLs and the key enzyme β1,3-galactosyltransferase V (β3GalT5) that converts Gb4 to SSEA3 remain largely unclear. Here we show that the expression of β3GalT5 significantly correlates with tumor progression and poor survival in patients, and the globo-series GSLs in breast cancer cells form a complex in membrane lipid raft with caveolin-1 (CAV1) and focal adhesion kinase (FAK) which then interact with AKT and receptor-interacting protein kinase (RIP), respectively. Knockdown of β3GalT5 disrupts the complex and induces apoptosis through dissociation of RIP from the complex to interact with the Fas death domain (FADD) and trigger the Fas-dependent pathway. This finding provides a link between SSEA3/SSEA4/Globo-H and the FAK/CAV1/AKT/RIP complex in tumor progression and apoptosis and suggests a direction for the treatment of breast cancer, as demonstrated by the combined use of antibodies against Globo-H and SSEA4.
Glycosylation is a protein post translational modification which plays important role in protein function, stabilization, trafficking, and turnover. Alteration of protein glycosylation is a common phenomenon during tumor progression, migration, invasion, angiogenesis, as well as metastasis. Hence, aberrant glycan structures and the induced corresponding anti-carbohydrate antibodies are potential biomarkers for cancer diagnosis. In this study, serum N-glycomes and anti-carbohydrate antibodies from normal populations and oral squamous cell carcinoma (OSCC) patients were investigated. Total serum proteins were lyophilized and subjected to chemical reduction, alkylation and trypsin digestion. The N-glycans were released, purified, permethylated, and analyzed using MALDI-TOF-Mass spectrometry. In addition, the serum anti-carbohydrate antibody profiles were also investigated by carbohydrate microarray. We found that the relative abundances of seven N-glycans were decreased or increased in serum of OSCC with diagnostic accuracy greater than 75%. The relative abundances of total tri-antennary and tetra-antennary glycans with varying degrees of fucosylation and sialylation were also increased in serum N-glycomes of OSCC. In an independent validation group of forty-eight OCCC patients, most of the high-molecular weight serum N-glycans showed significantly high sensitivity and specificity according to the identified cutoff values. Furthermore, the serum levels of two IgM antibodies were elevated accompanied with the decreased levels of nine IgG antibodies in patient serum. Taken together, these serum N-glycans and antibodies identified in this study should be considered as the candidates of potential biomarkers for OSCC diagnosis.
The development of anticancer vaccines requires the identification of unique epitope markers, preferably expressed exclusively on the surface of cancer cells. This Account describes the path of development of a carbohydrate-based vaccine for metastatic breast cancer, including the selection and synthesis of Globo-H as the target, the development of the vaccine conjugate and adjuvant design, the study of the immune response and consideration of class switch, and the analysis of Globo-H distribution on the surface of various cancer cells, cancer stem cells, and normal cells.
The first synthesis of Globo-H was accomplished through the use of glycal chemistry; this approach delivered sufficient material for evaluation in phase I human trials. The development of a programmable one-pot synthesis method rendered the synthesis more practical and enabled the midstage proof-of-concept phase II trial and late-stage phase III trial. Finally, enzymatic synthesis of Globo-H coupled with cofactor regeneration was used for the late-stage multicenter trials and manufacture of the product. Along this path of development, it was discovered that the vaccine induced antibodies to target not only Globo-H, but also SSEA3 and SSEA4. Moreover, these three glycolipids were found to be uniquely expressed not only on the cell surface of breast cancer but on 15 additional cancer types, suggesting the broad application of this vaccine in cancer treatment and perhaps cancer prevention. In addition, a new glycolipid adjuvant was designed to target the CD1d receptor on dendritic cells and B cells for presentation to and activation of T cells to modulate the immune response and induce a class switch from IgM to IgG, thereby overcoming the common problem of carbohydrate-based vaccines that often induce mainly IgM antibodies.
As demonstrated in this vaccine development, the chemical approach to the synthesis and conjugation of carbohydrate-based immunogens provides the flexibility for access to various structures and linkers to identify optimal compositions for development. The enzymatic method was then introduced to enable the practical synthesis of the vaccine candidate for clinical development and commercialization. Overall, this Account illustrates the path of development of a cancer vaccine, from selection of a unique glycan marker on breast cancer cells and the cancer stem cells as target to the use of chemistry in combination with immunology and cancer biology to enable the design and development of the Globo-H vaccine to target three specific glycan markers exclusively expressed on the cell surface of a number of different types of cancer.
The first synthesis of Globo-H was accomplished through the use of glycal chemistry; this approach delivered sufficient material for evaluation in phase I human trials. The development of a programmable one-pot synthesis method rendered the synthesis more practical and enabled the midstage proof-of-concept phase II trial and late-stage phase III trial. Finally, enzymatic synthesis of Globo-H coupled with cofactor regeneration was used for the late-stage multicenter trials and manufacture of the product. Along this path of development, it was discovered that the vaccine induced antibodies to target not only Globo-H, but also SSEA3 and SSEA4. Moreover, these three glycolipids were found to be uniquely expressed not only on the cell surface of breast cancer but on 15 additional cancer types, suggesting the broad application of this vaccine in cancer treatment and perhaps cancer prevention. In addition, a new glycolipid adjuvant was designed to target the CD1d receptor on dendritic cells and B cells for presentation to and activation of T cells to modulate the immune response and induce a class switch from IgM to IgG, thereby overcoming the common problem of carbohydrate-based vaccines that often induce mainly IgM antibodies.
As demonstrated in this vaccine development, the chemical approach to the synthesis and conjugation of carbohydrate-based immunogens provides the flexibility for access to various structures and linkers to identify optimal compositions for development. The enzymatic method was then introduced to enable the practical synthesis of the vaccine candidate for clinical development and commercialization. Overall, this Account illustrates the path of development of a cancer vaccine, from selection of a unique glycan marker on breast cancer cells and the cancer stem cells as target to the use of chemistry in combination with immunology and cancer biology to enable the design and development of the Globo-H vaccine to target three specific glycan markers exclusively expressed on the cell surface of a number of different types of cancer.