

Anti-tumor efficacy and potential mechanism of action of a novel therapeutic humanized anti-Globo H antibody, OBI-888

Yu-Chi Chen¹, Ming-Chen Yang¹, Yi-Chien Tsai¹, Hui-Wen Chang¹, Chang-Lin Hsieh¹, Yu-Jung Chen¹, Kuang-Hsiu Lee¹, Jiann-Shiun Lai¹, I-Ju Chen¹ ¹OBI Pharma, Inc., Taipei, Taiwan

INTRODUCTION

OBI-888 is a therapeutic humanized monoclonal IgG1 antibody targeting Globo H, a cancer-specific hexasaccharide antigen overexpressed on a variety of cancer cells of epithelial origin such as colon, ovarian, gastric, pancreatic, endometrial, lung, prostate, and breast cancers.^{1, 2, 3} In some normal tissues, Globo H is negligibly expressed on the apical epithelial cells at lumen borders, where accessibility to the immune system is restricted.³ This study evaluated mechanisms of action and in vivo efficacy of OBI-888.

METHODS

We evaluated the potential therapeutic activity of the Globo H monoclonal antibody (OBI-888) in vitro to determine complementdependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent phagocytosis (ADCP) and T-cell suppression. We also evaluated it in xenograft models of various tumors to determine the effects on tumor growth and M2 macrophage reduction.

RESULTS

ADCC, antibody-dependent cell-mediated cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; CDC, complement-dependent cytotoxicity; EC₅₀, half maximal effective concentration. (A) ADCC reporter bioassav responses were collected from 9 serial dilutions from 80-0.31 µg/mL of OBI-888. (B) ADCP reporter bioassay responses were collected from 10 serial dilutions from 160-0.31 µg/mL of OBI-888. (C) Binding curve of OBI-888 to purified human complement c1q. Data were collected from 14 serial dilutions from 1,000-0.0006 µg/mL of OBI-888. (D-I) Binding curve of OBI-888 to purified human FcγRI, FcγRIIA, FcγRIIB, FcyRIIIA, FcyRIIIA (V158F) and FCRN. Analysis of FcyR assays was performed over various concentrations of OBI-888 ranging from 2,000-0.0004 µg/mL Four-parameter logistic regression curve fit analysis was used. The OD values are shown as mean ± standard deviation.

(B) OBI-888 reduced Globo H-ceramide-induced T-cell inactivation. Different concentrations of Globo H-ceramide were incubated with 8.7 µM of OBI-888. After centrifuge, the supernatants were then added to Jurkat/NFAT-Re Luc cells. After incubation, the cells were washed once with medium and added to anti-CD3/CD28 pre-coated plate. Bio-Glo luciferase assay reagent was then added to the plate. Luminescence was measured at 470 nm. Fold of induction was calculated by RLU_{activated}/RLU_{unstimulated}.

BALB/c Nude male mice subcutaneously implanted with HCC1428 or HPAC cells were intravenously administrated with OBI-888 at 0 and 30 mg/kg twice weekly for 6 weeks or at 0, 20, and 80 mg/kg twice weekly for 5 weeks, respectively. At day 42 for HCC1428 xenografts and day 35 for HPAC xenografts, the xenografts were fixed, sectioned, and stained with CD163 and hematoxylin.

Decreased M2 macrophage population after OBI-888 treatment

Table 1. Intra-tumoral and peri-tumoral infiltrations of CD163⁺ macrophages

		Intra-tumoral infiltrations	Peri-tumoral infiltrations
		M2 macrophage CD163+	M2 macrophage CD163+
Xenograft model	OBI-888 dose (mg/kg)	cell count ¹	cell count ¹
MCF-7	0	4.60 ± 6.13	60.73 ± 26.5
	3	0.30 ± 0.34	68.03 ± 17.4
	10	1.17 ± 0.71	44.87 ± 24.32
HPAC	0	12.00 ± 4.81	105.6 ± 3.96
	20	6.80 ± 0.42	97.85 ± 32.46
	80	$1.90 \pm 0.57^{**}$	58.30 ± 4.24
HCC-1428	0	19.68 ± 4.77	103.6 ± 29.77
	30	6.30 ± 7.17*	62.70 ± 8.23*

¹Average cell count of 10 fields under microscopy The results are presented as mean \pm standard deviation of each treatment group. ** P < 0.01

CONCLUSIONS

ADCC, ADCP, and CDC

- OBI-888 can trigger ADCC, ADCP, and CDC, mechanisms utilized by therapeutic antibodies to induce tumor lysis.
- The ability to trigger ADCC and ADCP was further supported by the binding affinity of OBI-888 to multiple FcyRs, including FCyRIIIA V176F, which can potential benefit those patients with low-affinity genotype.

In vivo efficacy

 Treatment with OBI-888 induced tumor growth inhibition in various types of tumor models that express Globo H, suggesting that OBI-888 has substantial therapeutic potential.

Decreased M2 macrophage

• *In vivo* tumor growth inhibition with decreased M2 population was observed in various Globo H-expressing xenograft models treated with OBI-888, suggesting the potential mechanism of action is through immune modulation.

Anti-immunosuppressive effect

- Globo H-ceramide displayed an immunosuppressive effect.
- OBI-888 reversed the immunosuppressive effect of Globo
- H-ceramide.

Clinical trial

• A first-in-human clinical trial of OBI-888 (NCT03573544) has been initiated.

References

- Mènard S, Tagliabue E, Canevari S, Fossati G, Colnaghi MI. Generation of Monoclonal Antibodies Reacting with Normal and Cancer Cells of Human Breast
- Cancer Res. 1983:43:1295–300 Ragupathi G, Slovin SF, Adluri S, Sames D, Kim IJ, Kim HM, et al. A Fully Synthetic Globo H Carbohydrate Vaccine Induces
- Focused Humoral Response in Prostate Cancer Patients: A Proof of Principle. Angew Chem Int Ed Engl. 1999;38:563–6.
- 8. Zhang S, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, et al. Selection of Tumor Antigens as
- Targets for Immune Attack Using Immunohistochemistry: I. Focus on Gangliosides. Int J Cancer. 1997;73:42–9.

Disclosures

